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A B S T R A C T

For the analysis of low-velocity impact damage, many analytical and numerical models were
developed by various authors. These models range from simple approaches with a single degree
of freedom up to finite element models on micro-scale. The prediction of delamination, fiber
failure, and inter-fiber damage, as well as a physically sound kinematic behavior, are usually the
objectives of these simulations. However, achieving satisfactory results requires massive com-
putation and modeling efforts. In the present paper, we review the capability to capture impact
damage on the coupon and the structural level. For this purpose, a large compendium of ana-
lytical and numerical analysis methods from various authors is considered. Based on existing
works, six representative modeling approaches of different abstraction scales are derived and
considered on a qualitative and quantitative benchmark study. We analyze all models regarding
their advantages and deficiencies. With two experimental coupon impacts, all approaches are
tested on their predictive capabilities on the coupon level. The applicability of these methods on
the structural level is evaluated according to the benchmark results. Modeling approaches in-
cluded in the benchmark range from high-fidelity models on meso-scale, macro-scale shell
models, and analytical estimations. The focus is put on stacked layer models with solid or shell
elements and various cohesive zone approaches.

With this paper, we also present guidelines for impact analysis strategies on the structural
level. These guidelines aim for a good balance between accuracy and computation effort and
involve various simplifications of impact scenarios. In this regard, the range of low-velocity has
to be monitored. The energy distribution over the eigenmodes of the impact system suitably
indicates the limit of low-velocity impact.

1. Introduction

Composite structures are likely to be exposed to impact loads during their service life. Bird strike, hail or tool-drop are typical
examples of an impact on an aircraft structure. Usually, impact scenarios are distinguished between Low-Velocity Impact (LVI), High-
Velocity Impact (HVI) and ballistic impact. Among these, LVI is of particular importance for the structural lifetime. LVI causes
damage inside the material, consisting mainly of delamination [1,2]. Such damage is classified as a Barely Visible Impact Damage
(BVID). If no other visible damage-modes occur simultaneously the damage will possibly remain undetected. Even though a sig-
nificant strength reduction is possible [3], the structure still has to stay capable of bearing the design loads. Sufficient residual
strength needs to be ensured for the entire structural lifetime. This problem is often approached by a massive qualification effort with
tests on structures and coupons. Besides, conservative knock-down factors increase the designed thickness of structures. In
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consequence, the significant advantage of a fiber reinforced material— a lightweight design — nearly disappears. Thus, derivation of
design improvements by the aid of numerical analysis becomes attractive.

Impact analysis on composite structures has already been a topic of research since the early nineties [4]. Many models that vary in
abstraction scale and applied methods were proposed for the last ten years. Recent studies show that it is possible to obtain excellent
simulation results through meso-scale finite element models. However, the simulation of impact is still challenging from the nu-
merical point of view. Achieving a sufficient accuracy in a reasonable computation time remains a challenge. For coupon simulations
with state-of-the-art models, computation times of one day or more are reported [3,5]. LVI is for one reason mainly critical here: a
high impactor-mass mi results in long contact time — this time needs to be captured by a transient simulation. The computation time
increases approximately linearly with the impact duration and is consequently proportional to mi .

Existing reviews on impact simulation rather focus on details of a selected modeling approach, such as the variation of failure
conditions or damage model. With the present work, the authors intend to compare methods in a more general way. A juxtaposition
of models on different abstraction scales shall provide the groundwork for weighing up the analysis effort and the result quality of an
impact analysis.

For that purpose, we introduce the methods available in the literature and explain the corresponding modeling techniques and
fundamental equations briefly. On the basis of the available methods, a choice of six specific methods is made. These shall cover a
wide range of abstraction scales and analysis efforts. So, we chose two analytical and four finite element approaches which are all
differently costly concerning the model preparation and the result computation.

All models are based on existing publications. Partially, modifications or recombinations were required to ensure their com-
parability. An evaluation of the methods is conducted through analyzing the predictive capabilities, the modeling effort, and the
computational expenses. In the actual benchmark, a direct comparison with the help of two test examples is presented. This com-
parison relies on experimental data and allows to evaluate the models' performance. Based on the benchmark results, guidelines for
impact analysis on the structural level are derived. Several suggested simplifications and idealizations of impact scenarios shall
improve the efficiency of impact analysis on the structural level.

2. Review of developments in impact analysis

2.1. Steps of development

The development of impact analysis methods went from simple analytical models to high-fidelity finite element approaches. The
overview in Fig. 1 shows the range of methods considered in this review. Each increase of predictive capabilities means a si-
multaneous increase of the analysis effort. The major aim of impact analysis is the prediction of damage. Already analytical or
empirical expressions can provide information about the damage onset and its quantitative dimensions. Numerical models can
predict the damage type and shape, depending on the modeling strategy with a different degree of detail.

Early analytical methods treat an impact system as a multi-body system in which springs connect one or more masses. Abrate
published the first of such spring-mass models in 1991 [4], and later by Christoforou [6] and others followed. These models capture
an elastic impact response, taking into account the plate deformation of the structure and the local surface indentation. Based on a
spring-mass model, Christoforou even developed a semi-analytical approach for analyzing impact by dimensionless constants, the so-
called loss factor theory [7]. It allows achieving kinematic similarity of size-scaled impact scenarios. These analytical methods permit
an estimation of impact duration, maximum contact force, and impactor displacement. Furthermore, Olsson developed an advanced
spring-mass model [8,9] that captures damage by a spring in series with the bending deformation. Singh and Mahajan [10] recently
enhanced this idea through damage consideration in each deformation mode.

The next higher abstraction level is a plate model. This approach comprises more natural frequencies of the impact system.

Fig. 1. Overview of impact analysis methods.
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Dobyns' development on the dynamics of orthotropic plates [11] forms the basis of those approaches. Building on that, Olsson derived
in 1992 the first impact model [12], based on Kirchhoff's plate equation. Besides, Swanson proposed an improved plate approach in
2005 [13] that is also valid for composite laminates [13]. Such plate models capture the undamaged dynamic behavior with higher
accuracy than spring-mass approximations. The inclusion of material-specific nonlinearities, as proposed by Najafi in 2016 [14], even
extends this capability.

Both spring-mass and plate models can be combined with an empirical or analytical prediction of Damage Threshold Loads (DTL).
Analytical estimations of the damage initiation and extent build on such DTL. For instance Olsson, Schoeppner and Abrate have
proposed respective methods [8,9,15]. DTL are usually derived using fracture mechanics, to predict the contact force that makes a
delamination grow. To predict the damage extent, Jackson and Poe [16] proposed a force-based approach that calculates the largest
delamination diameter.

Beyond the possibilities of analytical description, impact analysis can be conducted by the finite element method in many var-
iations. These variations are categorized in macro-, meso- and micro-models, depending on the laminate's abstraction scale of the
finite elements. Layered-shell approaches belong to the macro-scale. As proposed by Elder et al. in 2003 [17], such models capture
the kinematics of impact like a plate model. But they permit the evaluation of failure conditions on the ply-level and the corre-
sponding stiffness degradation. The model by Elder used explicit simulations in LS-DYNA implementation, Baaran [18,19] and
Kärger [20,21] even developed a stand-alone-tool for impact analysis (CODAC1). By implicit time integration, combined FE analysis,
and analytical equations an efficient impact analysis was achieved.

An upgraded macro-scale model that even included a stacking of sublaminates was published by Johnson et al. in 2001 [22]. This
stacking permits to use an interface model between the plies. Johnson applied an interface model from Allix and Ladeveze [23] to
capture delamination damage. This method still provides the basis for state-of-the-art meso-scale models. Considering the limited
computation power compared to today's possibilities, the results reported by Johnson are of reasonable quality.

The increase of computational power permitted to apply Johnson's idea on a higher degree of detail: Meso-scale FE models
capture the laminate by modeling each ply with at least one layer of elements. The majority of recent publications uses such a
modeling approach. The plies are equipped with a damage-model based on continuum damage mechanics (CDM) and the cohesive
zone method (CZM) according to Allix [23] is used at the interface. There is a vast variety of published meso-scale methods — the
interface model, the ply model, element types and meshing approaches are essential characteristics in which recent models differ. As
a meso-scale model can work with any homogenized failure condition [24,25], the choice of this condition is also an important
parameter.

In 2001, also Borg et al. published a cohesive element delamination model for composite laminates [26]. Based on this model, the
research group presented a complete meso-scale model for impact analysis in 2004 [27]. In this model, an approach for determining
the propagation direction of delamination was included. Published by Loikkanen el al., another meso-scale model followed in
2008 [28]. They applied the cohesive surface method in their impact analysis model.

In both these works of Loikkanen and Borg, good delamination predictions are reported. Borg additionally identified the necessity
of improved ply-damage-models. A correspondingly improved model was presented by Bouvet in 2010 [29] and by Gama in
2011 [30]. Later, several adapted configurations were developed, for example by Shi in 2014 [31], Gonzalez in 2012 [5] and Tan in
2015 [3]. Recent publications mainly provide incremental improvements. Better failure conditions [32], inclusion of nonlinearities
and the permanent deformation [3,33-35] or the damage evolution [3,36] are proposed. Panettieri also identified additional relevant
influence factors like the vibration behavior of the impactor [37].

Good results can be achieved with these methods, even though the computation effort is high and numerical difficulties have been
reported. Recent improvements possibly provide a better solution accuracy, but rather increase the computational effort than re-
ducing it. Usually, user-defined material models are necessary for the CDM damage-models. Especially if permanent indentation or
nonlinear shear behavior shall be included, onboard materials of commercial FE codes do not provide the required features. Gama
implemented a suitable material model for LS-Dyna and published it under the name Mat162 [38].

While usual meso-scale approaches capture intra-ply damage through continuum damage mechanics, Bouvet and Rivallant de-
veloped an alternative solution [29,39]. The mesh aligns with the fiber direction, and fiber-parallel cohesive zones are put inside each
ply. In contrast to continuum damage mechanics, cracks are captured as real singularities in the ply. The corresponding failure mode
is called ply-splitting [29] and a type of inter-fiber failure. The simulation results of Bouvet show excellent agreement with ex-
perimental results on different laminates of unidirectional plies.

Furthermore, other variants to build a meso-scale model without CDM were tried: The extended finite element method (XFEM)
XFEM was considered to be suitable for lamina damage by Nian [40] and Chen [41]. But Chen also mentioned difficulties with
explicit time integration and the required computation effort. Other advanced methods like phase field modeling [42] or discrete
elements [41] do still not provide the required maturity for application on laminated composites.

On the next level of detail, the prediction of inter-fiber fracture is conducted by a micromechanical model. Such a model needs to
be coupled with a reference volume element (RVE) in a multiscale approach. The damage onset and the matrix damage are predicted
on a micro-scale. Especially for multiaxial loading, such a prediction is superior to homogenized models. Micromechanical failure
criteria like Huang [43] or energy based matrix failure conditions [44,45] can be used. Lopes et al published the first impact model on
this abstraction scale in 2014 [46], in 2016 Ivančević and Smojver [47] proposed another approach.

1 Composite Damage Tolerance Analysis Code, www.dlr.de/FA.
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2.2. Existing reviews

Many researchers already have conducted reviews about impact analysis methods. The compendium ‘ Impact on Composite
Structures' by Abrate [48] represents a review of the entire spectrum of analytical methods. The capabilities and the deficiencies of
various spring-mass and plate models are analyzed and evaluated in this work. The first broadly-based review was conducted by Elder
et al. in 2004 [49]. Linear elastic fracture mechanics, macro-scale shell-models, and the damage threshold loads were tested. Among
these, damage threshold evaluation lead to surprisingly good results. But the test cases were still far from possible impact use cases.
For efficient aircraft design application, a need for further development and improved accuracy was determined.

Also about recent high-fidelity models, reviews have been published. A comparison of the predictive capabilities with different
failure criteria was conducted by Liu et al. [32]. Their model is based on stacked-solid approach with cohesive elements. According to
their results, the Puck criterion leads to the most reliable results. Force history, energy dissipation, and damage initiation forces were
plausibly predicted. Other criteria also lead to proper results. In consequence, it is appropriate to trade off between accuracy and
computation effort for particular applications.

In 2015, Lopes et al. conducted another benchmark about impact simulation methods [34]. Four different meso-scale modeling
strategies with varying mesh structures and cohesive zone models were presented and compared. Aligned meshing improved the
prediction of the intralaminar failure and the delamination. Cohesive surfaces permitted to include the friction behavior of two
delaminated plies and also lead to improvements in the overall results.

In addition to that, Jousset published a comparison of two different possibilities to employ a constitutive law in a cohesive
zone [50]. A standard bi-linear traction separation law was compared to a pressure dependent elasto-plastic damage-model. An
elastoplastic model showed a better behavior if the interface material showed significant plastic yield. May's evaluation of cohesive
laws [51] included strain rate effects. He provided an overview of the required enhancements and identified strain rate effects as
crucial only beyond LVI and quasistatic events. Abisset et al. proved in their work the equivalence of damage morphology between
quasi-static indentation and LVI [52]. On the numerical side, the influence of cohesive parameters on the impact response was
analyzed by Panettieri et al. [53].

The state-of-the-art modeling approach with a meso-scale model is also used beyond the analysis of LVI [3,32,34,54]. Corre-
sponding models for high-velocity impact were proposed by Pernas-Sanchez et al. [55] or by Heimbs et al. [56]. A comparable
approach is also applied for crushing analysis [57] and for general damage modeling in composite structures [58].

2.3. Prediction of damage visibility

In addition to the damage itself, the damage visibility is of significant interest for the numerical prediction. The visibility de-
termines whether a damage will be discovered and repaired. In aircraft application commonly a limit value of permanent indentation
at the impact spot is applied to define the visibility limit. Additionally also the fiber crack length on the impact side can be taken into
account to assess the visibility. The fiber crack length is predicted by nearly all finite element models accomplishing damage analysis.
In contrast to that, additional implementations are necessary to capture the permanent indentation model.

The physical causes of permanent indentation are resin plasticity and the impeded crack closure in the unloading phase [59].
When the crack closes, resin debris can prevent a crack from fully closing. This phenomenon affects both tensile and shear cracks.
There are several possibilities reported in the literature to capture it.

The most simple prediction is an empirical description by an analytical formula [48]. Using the contact law of Hertz [60] and a
damage threshold permits to compute a value for the permanent surface indentation. The evaluation of such a formula is possible
within the postprocessing of most impact analysis methods. For example, Li et al. [61] proposed a corresponding method: based on a
finite element model the permanent indentation is captured by an analytical law relying on the Hertzian contact.

Capturing the permanent indentation in a finite element model requires an adaption of the constitutive law. An appropriate model
of the unloading phase is essential. The stress has to reach zero before the strain reaches its zero-point. A simple bilinear degradation
law does not serve this purpose as the unloading always goes along a secant to the origin. In 2011, Falzon and Apruzzese proposed a
method to capture the permanent deformation based on the non-linear shear behavior [58,62]. This method was also applied in the
advanced impact simulation model of Tan and Falzon [3]. Fanteria et al. [63] confirmed that the permanent indentation predicted by
that method is qualitatively analogous to the indentation in experiments. In a sensitivity analysis, they pointed out that an accurate
knowledge about the non-linear shear behavior is significant for quantitative prediction of the indentation values.

Another approach was developed by Bouvet et al. [59]. This approach is based on the previously mentioned ply-splitting model
with intra-ply cohesive zones. The constitutive law of the cohesive elements capturing matrix damage is adapted. After tensile or
shear damage occurred, a stress of zero is reached before the strain reaches zero. The element responds with compression stress if the
strain becomes smaller than this predefined value. This law shall directly describe the effect of resin debris blocking the crack.

Lopes et al. suggest another alternative that works with a cohesive surface model [34]. They used the static friction of opposing
crack planes prevents the delamination from closing. That way, also a permanent deformation is described.

Apart from the visibility, the permanent indentation has also a significant influence on the energy absorption as Caprino et al.
showed in their study [64] and confirmed by Fanteria et al. [63]. After the impact, residual stresses remain in the laminate. This
elastic energy also contributes to the total energy absorption. Accordingly, models without a permanent indentation model under-
estimate this value. Although the prediction of permanent indentation is not part of the benchmark in this study, it is important to
mention that its prediction is also a crucial part of LVI analysis as it determines the visibility.
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2.4. Impact analysis on the structural level

Sufficiently accurate modeling strategies are available, the current challenge is the application of impact analysis on the structural
level. While the predictive capabilities seem satisfactory, the corresponding computation effort is already very high for small coupon
specimens. For coupon simulations of CAI impacts, Tan reports a computation time of 19 h on 32 CPUs [3], Lopes even 48 h on 40
CPUs, as a very fine mesh was applied. These numbers show that a blunt transfer of the same method to structural level would result
in inefficiently high computation effort. For some methods, also the modeling effort can severely increase.

An excellent example for a structural application of a high-fidelity impact analysis was published by Schwab and Pettermann in
2016 [65]. The definition of a damage-prone area permits to work with differently meshed zones. Riccio proposes in several pub-
lications a comparable approach [66,67]. He also applies a local analysis approach with a damage-prone area and uses it already on
the coupon level in order to reduce the computational costs. Both, Riccio and Schwab achieved good results with this local impact
damage analysis. Also, Riccio presented the application of a meso-scale model on a substructural level [68]. Johnson works directly
with a cut-out section of the actual structure [69]. Low-fidelity methods with a layered-shell mesh can directly be applied on the
structural level, as the number of DoF is significantly lower [20].

3. Applied damage prediction methods

While the previous section was a summary about impact analysis models, this section includes a brief description of the essential
methods for crack and damage prediction within these models. The modeling approaches in the following benchmark are based on
the features described in this section.

3.1. Delamination threshold forces

The determination of threshold forces for the onset of delamination and fiber cracking is crucial to assess the impact damage
through analytical models. The associated formulas are based on analytical relations between the laminate characteristics and an out-
of-plane loading. A combination with any impact model that predicts the contact force history is possible.

An analytical formula for a delamination threshold Fd that was defined by Olsson [70] is written in Eq. (1). In this equation, the
integer variable ndel represents the number of delaminating interfaces. GIIc is the critical energy release rate in mode II, the parameter
D* represents the effective bending stiffness of the laminate according to Eq. (2). In an earlier work, Olsson derived this parameter
from the bending stiffness entries of the classical laminate theory [12]. C is an analytical factor which is one for the quasistatic
solution of LVI. Taking dynamic effects into account, Olsson analytically derived a value of C ≈ 1.213 for intermediate-velocity
impacts [70].
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Olsson even derived an analytical formula for the approximation of the accumulated delamination area of all interfaces Ad- total

(Eq. (3)) [9]. Assuming that the delamination growth is driven by mode II, the energy dissipation Wloss is related to GIIc. In this
equation, F0 and w0 represent the impactor force and displacement after the completed delamination growth, Fd and wd are the
corresponding values at the delamination onset.
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Jackson and Poe proposed a second possibility to estimate the delamination size analytically. Their formula in Eq. (4) does not
build on the energy dissipation Wloss but on the interlaminar shear strength Xshear and the ply thickness t. That way, it correlates the
maximum contact force Fmax directly to a delamination diameter. Under the assumption of a circular delamination shape, the
maximum delamination diameter can be converted to the corresponding area Adela.
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These analytical estimations assume identical delaminations in all delaminating interfaces. Consequently, the projected dela-
mination area would be equal to the delamination area in each single interface. This idealization makes a comparison of the ana-
lytical value with experimental results difficult. Firstly, the distribution of delamination area in an impact experiment is not equal
among all interfaces. Secondly, the delaminations are not stacked congruently. Both effects increase the real projected delamination
area, though the accumulated area could remain constant. With the analytical approaches, underestimation is inevitable. Instead, the
accumulated delamination area over all interfaces would be a better comparative value for these methods.
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3.2. Cohesive zone method(CZM)

The key feature of an FE meso-scale approach is the interface model between the plies. At this interface, a cohesive zone method is
employed to capture delamination damage. In contrast to the VCCT method, no initial crack is required for the cohesive zone
approach. Therefore a CZM is preferred for impact analysis. It is a fracture-mechanical method which describes the initiation and the
propagation of a crack in a predefined interface. The basic ideas for the CZM were developed by Dugdale [71] and Barenblatt [72].
Allix and Ladeveze [23] were the first to present a corresponding interface model to capture delamination damage.

In the initial state of the interface, the cohesive zone connects both interface partners elastically. This connection concerns three
deformation modes that all lead to a separation of the partners: the deformation mode in normal direction and two out-of-plane-shear
deformation modes. In each mode, a stiffness component Kij and a relative displacement δij permit the calculation of a traction tij
through Hooke's law in Eq. (5). The stiffness components Kij have the unit [N/mm3] and stand for stress per separation. The tractions
describe the state of stress in the interface zone, and a damage initiation condition can be evaluated. When damage initiates, a
traction separation law describes the softening behavior of the interface.
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A cohesive zone can be employed in the form of cohesive elements and the form of cohesive surfaces. Eq. (5) represents the
formulation for cohesive surfaces. Cohesive elements work with a constitutive thickness value T0 to compute strain values from the
separations. The stiffness values of cohesive elements respectively require a multiplication with this thickness: KiT0=Ei. In both
cases, the stiffness of the cohesive zone is rather numerical than a physical parameter. In order to maintain physical soundness, the
stiffness has to be high enough not to influence the global laminate stiffness significantly. For the derivation of a quantitative value
for K, Turon [73] suggests that the ratio of the cohesive stiffness K and the ply stiffness E

Tply
33 shall be at least 50. After the failure

condition indicates damage initiation, the energy release rate Gi becomes the driving parameter. It determines the constitutive law of
the interface-softening.

Although the CZM is suitable for delamination prediction in impact analysis, it entails several difficulties. These concern the
parameters of the cohesive zone, the additional mass and compliance [73] in the laminate as well as the additional computational
effort. For numerical reasons, also a modification of the cohesive zone's strengths (maximum tractions) can be required. Even though
physically incorrect, this method is well-suited to permit larger element lengths in the cohesive zone. Turon et al. [73], later also
Harper and Hallett [74], analyzed this method in detail, and Panettieri et al. examined the application for impact simulation [75].

Turon proposed Eq. (6) to estimate the required minimal element length le for a cohesive zone in a ply interface. In this equation
Ne stands for the number of elements in the cohesive zone. According to Turon at least three should be chosen, here. E is the elastic
modulus of the corresponding deformation mode, and σmax the failure stress for damage initiation.
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3.3. Continuum damage mechanics(CDM)

Many impact analysis methods make use of a CDM approach to capture the intra-ply failure modes. The CDM concept was
developed by Chaboche and Lemaître in 1980 [76]. Its basic principle is the homogenization of a crack. The effective stress σ results
from the nominal stress ̂σ by multiplication with a factor (1−d) in Eq. (7). This factor represents the ratio of the remaining load
carrying cross-section and the initial cross-section. The parameter d describes the degradation status.

̂= − = −σ d σ d Eε(1 ) (1 ) . (7)

Matzenmiller expanded this method for two-dimensional states of stress and orthotropic materials [77]. Six degradation variables
di are necessary to describe the degradation status of a material point under a three-dimensional state of stress. One for each normal
and shear deformation mode. This number increases to nine if compression and tension are considered as separate failure modes.
Depending on the normal stress, only one of two damage variables for each normal mode becomes active according to Eq. (8). This is
achieved through the Macaulay brackets in the fraction σ

σ
nn
nn

. It returns zero for a negative and one for a positive σnn [78].
The quantitative value of the damage variables are usually obtained through a bilinear damage evolution law like in Eq. (9) and

illustrated in Fig. 2. The strain of damage initiation εi results from the failure condition. The critical energy release rate Gc of the
corresponding damage mode defines the integral value of the bilinear curve. As a result, the ultimate failure strain εu is determined.
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A combination of CDM with any homogenized failure criterion [25] is possible. However, it requires an analysis trick. Damage
evolution is not independent in each strain component. It occurs a fracture plane of the corresponding damage-mode [36]. For
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degradation in a fracture plane, a scalar equivalent strain value has to be obtained. This is accomplished through the three strain
components in the fracture plane. Most authors work with a root sum squares method like in Eq. (10). The computation of εu
additionally requires an equivalent stress as reported in Eq. (11). The sketch in Fig. 3 depicts the fracture plane coordinates n, l, t.
Fracture plane stresses and strain are defined in these coordinates, where nn stand for the normal component while nl and nt represent
the shear components.

= + +ε ε ε εi nn nl nt
2 2 2 (10)

= + +σ σ σ σ .i nn nl nt
2 2 2 (11)

Another important issue is the scaling of εu by the characteristic element length of the damage-mode. This scaling becomes
necessary because the strain energy in the element depends on the element volume V e, while the energy absorption by a crack Gc

depends on the corresponding crack surface Ai. Accordingly,
V
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i
defines the required length parameter lic.
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Eq. (12) results in a limitation of the maximum allowed element length for each damage mode because the condition εi< εu shall
always be fulfilled. This leads to Eq. (13) limiting the element length le.
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Suitable CDM material models are available in most commercial FE codes. For example in Abaqus, the Hashin criterion [79] and
an appropriate damage evolution are provided for shell elements. For LS-Dyna, the material model MAT162 offers the corresponding

Fig. 2. Bilinear constitutive law.

Fig. 3. Sketch of the coordinates fracture plane and the coordinate systems.
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features. Anyway, an implementation in a user subroutine is commonly used. The gain of flexibility to implement various failure
conditions, damage evolution equations or non-linearity models is of value for improvement of the result-quality. For application in
the present work, a VUMAT implementation for Abaqus explicit was accomplished. A CDM approach was employed according to the
equations in this section. The criterion in Eq. (14) was used as the failure condition. The parameter α was set to one for inter-fiber
failure (Quad strain criterion) and to zero for fiber failure (max strain criterion). In consequence, six separate damage-modes have to
be considered — compression and tension in each direction of the material coordinate system.
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4. Implemented impact models for comparison

In this section, we introduce the six modeling approaches to be tested in the benchmark. These are composed of two analytical
and four numerical methods. The descriptions include a summary of the models' key features concerning the laminate description and
the corresponding damage model. This section does not describe the modeling of the actual impact scenario with its boundary
conditions and impactor. These features will later be explained in Section 5.1, because they are not part of the method itself but
rather depending on the specific application scenario.

Table 1 provides an overview of the key characteristics of all approaches. Also, the most important source of literature for each
model is listed there. However, the applied models in this work are not equal to the literature models. The conducted simplifications
and modifications were necessary to ensure the comparability of the different models. In some cases, these changes can be responsible
for discrepancies of the results.

4.1. Spring mass model

The first model for the benchmark is the most simple way to analyze an impact event. Therefore, a spring-mass model with a
single degree of freedom is set up as shown in Fig. 4. A point mass m1 and a linear spring k1 represent the impact system. This is an

Table 1
Overview of six modeling approaches to be benchmarked.

Spring mass Ortho. plate Layered shell Stacked-shell Stacked-solid Splitting

Abstraction scale Global impact system Macro Macro Macro-meso Meso Meso
Ply elements Homogenized in a

spring
Analytic plate S4Ra S4Ra C3D8Rb C3D8Rb + COH3D8c

Interface – – Integration point COH3D8c Cohesive
surfaces

COH3D8c

Analysis environment Scilab Scilab Abaqus standard Abaqus
explicit

Abaqus explicit Abaqus explicit

Delamination Threshold force Threshold force Quad strain Quad strain Quad strain Quad strain
Fiber failure – – Max strain Max strain Max strain Max strain
Inter-fiber Failure – – Hashin Hashin Quad strain Quad strain (cohesive

elements)
Damage Evolution – Secant stiffness

limit
Bilinear Bilinear Bilinear Bilinear

Closest literature
Models

Abrate 1991 [4] [11,12] Baaran 2003 [18],
Karger 2008 [20]

[41] Liu 2016 [32] Hongkarnjanakul 2013 [80]

a Linear shell elements with reduced integration.
b Linear solid elements with reduced integration.
c Cohesive elements.

Fig. 4. Spring mass models of an impact system.
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idealization in several ways: vibration modes of higher-order and effects of non-linearity are fully neglected. The bending, the shear
deformation, the membrane deformation and the surface indentation [60] are all summarized and linearized through a scalar
stiffness variable.

The parameter determination is also simple. The mass m1 consists of the impactor mass mi and the modal mass belonging to the
lowest structural eigenmode participating in the impact. While the first is quite high for low-velocity impact, the latter is quite small
and mi ≈ m1 becomes a reasonable approximation. An estimation of the stiffness k1 can be done using experimental impact data, a
finite element analysis or for simple geometries with an analytical approximation.

This linear model with constant parameters can approximate the impact duration =t πi
m
k

1
1

, the maximum impactor displace-

ment =x E
kmax

2 i
1

and the maximum contact force of =F W k2 imax 1 . If k1 was determined for the undamaged system, force and

indentation can be regarded as theoretical maxima for a given impact scenario.
Damage estimations are conducted with the presented analytical methods from Section 3.1. The damage threshold formula in Eq.

(2) from Olsson is evaluated. The delamination area is estimated with Jackson and Poe's method given in Eq. (4).

4.2. Plate model

With a plate model, a second analytical method is included in this benchmark. The basic principle of this model derives from
Dobyns' idea [11] for capturing the dynamic behavior of orthotropic plates. Simply supported boundary conditions are applied and
only bending deformation is taken into account in the present study. For that case, the indentation w of the composite plate is
calculated based on the differential Eq. (15). The indices x and y represent the respective derivatives of w. The coefficients Dii are the
plate stiffness constants from the classical laminate theory.

+ + + =D w D D w D w f2 ( 2 ) .xxxx xxyy yyyy11 , 12 66 , 22 , (15)

According to Dobyns' the solution of this equation is approached by a series of sine functions for the indentation w and the load f.
To include effects of surface indentation z, this plate theory is combined with the contact model of Hertz [60] in Eq. (16). The
impactor displacement x is the sum of w and z.

=F z k z( ) .h
3
2 (16)

Based on these two equations, an elastic response of the impact system can be obtained. A simple damage model that is based on a
damage threshold force extends this plate model. If the contact force exceeds the threshold the surface indentation value z1 is saved.
The following surface indentation z−z1 is seen as irreversible and linear with a reduced stiffness. This value has to be derived from
experimental impact data of the impact scenario to be analyzed.

Finally, the equation of motion + =F m x ̈ 0i is set up for the solution of the impactor displacement x numerical time integration is
required. This solution procedure was implemented in Scilab2. The damage threshold force is obtained by Olsson's method in Eq. (2).
For determination of the damage size, the delamination area is estimated with Jackson and Poe's method given in Eq. (4).

4.3. Layered-shell model

The layered-shell model represents the very basic method of impact simulation through the finite element method. A single layer
of linear, reduced-integrated shell elements represents the entire specimen layup as the illustration in Fig. 5 shows (S4R with en-
hanced hourglass control in Abaqus [81]). These shell elements are so-called layered-shells because the laminate is taken into account
within the shell element. The shell stiffness is calculated through a laminate theory. For evaluation of stresses and strains in each ply,
at least one integration point per ply is necessary. An advanced technique of this model includes the interfaces in addition to the
actual plies according to the model sketch in Fig. 5. At least one integration point represents each ply interface that can delaminate.
These interface layers have the properties of the matrix material. The evaluation of a delamination criterion becomes possible directly
at the interface. Respectively, ply failure is calculated at the plies' integration points, using the built-in Hashin criterion from Abaqus.
A bilinear progressive-damage model for intra-ply failure and delamination is applied.

The required mesh density of this method depends only on the desired accuracy of the damage result. Consequently, a layered-
shell model needs only a few degrees of freedom and implicit time integration makes sense. In the transient impact analysis, this
implicit time integration permits quite large time-increment in comparison with explicit methods.

4.4. Stacked shell model

This model is the first representative of the meso-scale. A stacked shell approach as illustrated in Fig. 6 is the respective most
simple variant. Linear, reduced-integrated shell elements with enhanced hourglass control represent each unidirectional layer. Co-
hesive volume elements with eight nodes (COH3D8 in Abaqus [81]) connect the layers. Tie constraints couple the cohesive layer to
each neighbor ply. This coupling is computationally more expensive than shared nodes between both plies but offers more flexibility
concerning the mesh in interface and ply. As Abaqus offers an appropriate continuum damage mechanics model for shell elements,

2 www.scilab.org.
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this stacked-shell model can be fully realized through onboard-means of Abaqus. The damage model is based on the Hashin failure
condition [79] and applies a bilinear degradation law as described in Section 3.3. A detailed description of this damage model can be
found in the analysis user's guide of the Abaqus documentation [81]. While the mesh density of the ply mesh still depends only on the
desired accuracy of the damage results, the numerical issue makes demands on the mesh density of the cohesive plies. Due to a large
number of degrees of freedom, implicit time integration would be inefficient for this approach. Consequently, this and all other meso-
scale approaches in the present benchmark are conducted with explicit time integration.

4.5. Stacked-solid model

The stacked-solid model in this benchmark works analogously to a stacked shell model in Section 4.4, but each ply is represented
by one layer of brick elements like in the model by Tan [3]. With linear, reduced-integrated brick elements (C3D8R with enhanced
hourglass control in Abaqus [81]), it is an extension of the stacked-shells. The solid elements consider out-of-plane stresses and strains
entirely. The direct extension of the presented stacked-shell model would be a stacked-solid model with cohesive elements. However,
for the stacked-solid model in this benchmark, two more changes are employed.

Firstly, the cohesive elements are replaced by cohesive surfaces as shown in Fig. 7. In contrast to shell elements, solid elements
permit the direct application of cohesive surfaces. A direct comparison of cohesive elements and cohesive surfaces is not part of the
present paper. A suitable direct comparison of both methods was already established by Lopes [34]. In this reference, better results
were reported for cohesive zone surfaces, which is another reason to prefer cohesive surfaces to cohesive elements in this work.

The second difference is the continuum damage mechanics model. For solid elements, there is no suitable model available in
Abaqus explicit. Accordingly, a user-defined material model must be applied. For that purpose, the method described in Section 3.3 is
applied to capture intra-ply damage by the solid elements.

In contrast to the general description of the CDM method in the Section 3.3, this stacked solid model works with only five damage
modes of the quadratic strain criterion. The tensile mode in out-of-plane direction was deactivated, as the respective fracture plane is
to the in-plane directions of the laminate. Therefore, the corresponding damage would produce an echo in the ultrasonic d-scan
analysis — the damage would be detected as a delamination. The numerical model shall capture the corresponding damage with a
single damage variable, which is the damage status of the cohesive zone for this model. Even though this modification relocates
damage from the ply to a neighboring interface, the impact solution is hardly affected. Anyhow, for improved accuracy it is re-
commended to work with all ply-damage modes.

4.6. Ply-splitting model

The ply-splitting model is a very advanced variant of the stacked-solid model. Hongkarnjanakul et al. developed this approach and
obtained excellent delamination results with it [80]. For that reason, we consider a model based on Hongkarnjanakul's approach in
the present benchmark. In comparison to the previous stacked-solid model, the inter-fiber failure model is changed now. Fiber-
parallel cohesive zones are placed within the ply like the illustration in Fig. 8 shows. In contrast to the continuum damage mechanics,
the cohesive zone method captures a crack as a singularity. That way, the fiber-parallel splitting of plies is included without
homogenization. A precondition for this approach is that the element edges in the ply mesh align with the fiber orientation. In

Fig. 5. Layered-shell approach without (top) and with interface plies (down).

Fig. 6. Layup model schematics of the stacked shell approach.

Fig. 7. Schema of the stacked-solid model with cohesive elements (top) and cohesive contact (down).
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contrast to the original model by Hongkarnjanakul, in the present study, we did not consider permanent indentation effects and
applied a simple bilinear damage law for the inter-ply and intra-ply cohesive zones.

Apart from the intra-ply cohesive zones, this model is similar to the stacked-solid approach in Section 4.5. However, the con-
tinuum damage mechanics model is switched off for tensile matrix damage as this failure mode is now captured by the cohesive
zones.

5. Benchmark

This section describes the actual benchmark. It begins with the introduction of the experimental test cases. By these test cases, the
evaluation of the presented methods from Section 4 follows, comprising three different aspects: the analysis results and the efforts for
the computation and the model building.

5.1. Impact test cases

The experimental reference for the benchmark is a simple impact configuration on a flat specimen. Test cases on the coupon level
meet the requirements of the impact benchmark because the LVI damage is a local phenomenon [82]. A standardized coupon test
setup exists for the compression after impact test in a drop tower. Standards of ASTM, DIN and AITM [83–85] define its configuration
almost similarly. A specimen with the in-plane dimensions 150×100 mm2 and a thickness of 4 mm is impacted on a frame with a
125×75 mm2 cutout. The impactor shall be hemispherical with a diameter of 16 mm. Despite the small coupon dimensions, all
important damage effects can occur. The testing procedure is well known, and there are many published results available for
comparison.

The two reference cases to be compared with the simulation results differ in the type of material, the layup, and the impact
energy. The first case is taken from literature. Additionally, a second test case was taken from an in-house testing campaign that was
conducted by Dienel and Tamer, other researchers from our institute.

• Test case 1: 25 J impact on quasi-isotropic T700/M21 layup
This test case was originally published by Hongkarnjanakul et al. in 2013 [80]. The referenced paper includes a testing campaign
with several laminates manufactured from the T700/M21 material. Among those laminate, the selected test is originally named
‘A1’. The layup consists of eight double plies with a thickness of 0.5 mm: [02,452,902,−452] s. This stacking leads to quasi-
isotropic in-plane properties. Hongkarnjanakul et al. also provide the necessary material data. This test case was already applied
for validation by several authors [3,32,86]. So its application in the present study facilitates the comparison of the results with
other works. However, as there is no data about experimental scatter available in the original paper, a discussion of the scatter is
not possible.

• Test case 2: 40 J impact on clustered IMA/M91 layup
The second case is taken from a testing campaign that Dienel and Tamer conducted and published in 2015 [87]. They used an
asymmetrical, clustered layup, consisting of 22 plies: [45,45,45,0,−45,−45,−45,90,−45,0,45]s. The ply-material is an M91
prepreg with the intermediate modulus fiber IM7 and a ply thickness of 0.184 mm. The material data is supplied in the mentioned
publication by Dienel. Additionally, there is a data sheet provided by the manufacturer Hexcel [88].
The availability of several history curves permits an evaluation of the results with the background of experimental scatter. The
range of result values is very valuable, as large scatter can be expected for impact damage.
Due to the clustered characteristics, this layup has only 12 interfaces that can delaminate. For that reason, the delaminations of
each interface can reliably be identified in the ultrasonic D-Scan result.

5.1.1. Material parameters and minimal elements length
The required material data for both test cases are provided in Table 2. The data was taken from the publications of Hon-

gkarnjanakul and Dienel, as well as from a data sheet of Hexcel [80,87,88].
With these material parameters, the minimal element length for the FE methods can be derived. The minimal required element

length for all four FE models depends on the intra-ply damage parameters and is defined according to the Eq. (13). For cohesive zone
methods, the interface model also requires a minimal element length according to the Eq. (6) by Turon.

The minimal lengths values le-min for the given set of material parameters are listed in Table 3. The minimum value in each

Fig. 8. FE Model.
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column defines the minimum element for the corresponding impact model. In this case, this value would be 0.2 mm. However, this
value is too small to analyze an impact efficiently. For that reason, a modeling assumption is used for the FE methods in the present
study. Other authors also work with much larger elements. The highest mesh density in an impact analysis model was reported by
Gonzalez with 0.3 mm [5]. We considered this value as too small for an efficient impact analysis. The 0.2 mm-requirement is driven
by the matrix compression failure mode ‘Gm+ ’. Thus, a larger element length violates the energy release rate of this mode. We
decided that the violation is tolerable for compression failure because the real energy absorption of compression damage is higher
than the energy release rate for a single crack. It depends on the crushing of the material after the crack propagation [89] and needs a
more advanced constitutive law. In this case, the increased energy absorption is included in the bilinear law. Therefore, 1 mm was
chosen for the damage-prone ply elements and cohesive elements.

5.1.2. Model building
Both test cases were conducted by the same CAI standard. Thus, the boundary conditions for both are similar. The CAI test setup,

consisting of the support frame, four clamps, and the impactor were modeled as own parts of finite elements as the Fig. 10 shows.
Contact definitions between the specimen and the test setup ensure the physically plausible interaction. The applied contacts between
the specimen and the test setup are indicated in Fig. 9. The price for this level of detail is an increased number of degrees of freedom

Table 2
Applied material properties for the benchmark simulations.

T700/M21 M91/IM7

Density [kg/m3] 1600 1570

E11t [GPa] 130 170
E11c [GPa] 100 150
E22t [GPa] 7.7 8.8
E22c [GPa] 7.7 9.4
E33 [GPa] 7.7 9.0
G12, G13 [GPa] 4.8 5.5
G23 [GPa] 4.8 4.5
ν12, ν13 [–] 0.33 0.228
ν23 [–] 0.48 0.48
X11t [MPa] 2080 2700
X11c [MPa] 1100 1590
X22t [MPa] 60 105
X22c [MPa] 180 252
X33c [MPa] 180 252
X12, X13 [MPa] 110 105
X23 [MPa] 65 65
GIc ⎡

⎣
⎤
⎦

mJ
mm2

0.5 0.5

GIIc,GIIIc ⎡
⎣

⎤
⎦

mJ
mm2

2.1 2.1

Gf+ ⎡
⎣

⎤
⎦

mJ
mm2

110 106

Gf- ⎡
⎣

⎤
⎦

mJ
mm2

35 81

Gm+ ⎡
⎣

⎤
⎦

mJ
mm2

0.5 0.3

Gm- ⎡
⎣

⎤
⎦

mJ
mm2

2.1 0.8

Gm- shear ⎡
⎣

⎤
⎦

mJ
mm2

2.5 2.5

Xsh [MPa] 50 50
Xn [MPa] 20 20

Table 3
List of the minimal element length required by each damage mode.

T700/M21 M91/IM7

Damage mode le-min [mm] le-min [mm]

‘GIc’ 1.8 1.2
‘GIIc’ 1.2 2.1
‘Gf+ ’ 6.6 4.9
‘Gf- ’ 5.8 9.6
‘Gm+ ’ 2.1 0.5
‘Gm- ’ 1.0 0.2
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and contact definitions. Each FE method from Section 4 uses this FE test setup and only requires exchanging the laminate model of
the specimen.

The analytical models cannot work with contact definitions. Instead, equivalent boundary conditions have to be found. Simple
support at the outer edges of the specimen leads to a response that is too soft. Simple support at the edge of the cut-out in the support
frame is too stiff. For that reason the mean value between these extreme values was applied: the effective size for the plate model
analysis with simply supported boundary conditions was set to 137.5×87.5 mm2

5.2. Analysis results

The evaluation of the test results is carried out on the basis of observable damage-modes, history data, and some distinctive values
characterizing the entire impact, listed in the following:

• Delamination damage: The major failure mode of a Barely Visible Impact Damage (BVID) is delamination [48]. The ultrasonic
analysis is applied to detect the delamination inside the specimen. Comparing the ultrasonic results with the simulation, a
qualitatively plausible prediction of shape and orientation for each delamination is important. Quantitatively, the projected
delamination area over all interfaces is a common reference value. However, the scattering of the projected delamination are is
usually large.

• Fiber cracking: Without an X-ray analysis, fiber cracks are visible only in the outermost plies. The prediction of their size and
orientation is important. In the two experimental test cases, fiber cracks occurred only on the impact side occurred in the top ply.
Only this fiber crack will be evaluated in the benchmark.

• Matrix cracking: Typically, large inter-fiber cracks appear at the impact backside in the lowermost ply. Straight, sharp cracks arise
in the direction of the fiber orientation. They are visible and can be compared to the simulation results.

• Force-time history: This history curve is significant because it provides information about the participating frequencies of the
impact. Also, their influence on the damage threshold forces can be seen here.

• Force-displacement history: In addition to the force-time history, this plot shows the specimen stiffness for each moment of the
impact process. In addition, the energy absorption can be deduced from it.

• Energy dissipation: As a characteristic value of the impact damage, the total energy dissipation Wdis is taken into account. It results
from the difference of the impactor's kinetic energy before and after the impact.

5.2.1. Test case 1: 25 J impact on quasi-isotropic laminate
Consisting of eight double layers, this layup has only six possible delamination interfaces. This limited number allows the in-

dividual comparison of the delamination in each interface, as presented in Table 4. This overview provides a general impression

Fig. 9. Schematics of the finite element model with contact definitions indicated in red. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 10. Assembled finite element model of specimen and impact test rig.
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about the models' capabilities for delamination prediction. On first sight, it is striking that the results of the analytical methods
systematically differ from the results of the FE methods which is a result of the simple character of the analytical methods. The
damage prediction is limited to a scalar value in the form of the largest diameter. As there is no information about the distribution in
thickness direction provided, the same delamination shape is assumed for all interfaces. In contrast to that, all FE models are capable
of predicting the pattern of each delaminated interface.

The history curves in Fig. 11 complement the graphical overview. The curves in this figure are separately displayed for the
analytical and the FE models because it permits better distinction of the curves. There is nearly no progressive damage behavior in the
results of the analytical methods and the layered-shell method. These results suggest the need of a meso-scale approach for an
appropriate impact analysis.

For a quantitative comparison, the essential values of the damage and the history data are listed in Table 5. From these results, we
conduct a step by step evaluation of each model in the following paragraphs. We point out the advantages and the deficiency of each
method and discuss the peculiarities.

The spring-mass model describes the impact force history with a sine curve, based on the linearized stiffness and the impactor mass.
The respective estimation of the maximum contact force was expected to be larger than the experimental value because there is no
progressive damage law included in this model. This expectation was found to be true, as the predicted contact force is around 2 kN
larger than in the experiment. For the same reason, the contact time, as well as the maximum indentation, are underpredicted and the
energy dissipation is zero.

The delamination threshold Fd was predicted by Olsson's equation and lead to a solid result close to the experimental value.
However, the estimation of the delamination area through Poe's equation is severely too low. This behavior was already expected and
explained in Section 3. Only the accumulated delamination area in all interfaces could be a reliable comparative value.

The orthotropic plate model shows an initial response that is similar to the prediction of the spring-mass model. After the damage
initiation, a slight degradation of the stiffness can be observed. Consequently, the overestimation of the maximum force is with 1.5 kN
smaller than the elastic value. The maximum indentation value dmax increased accordingly. Through the progressive damage law, the
energy dissipation Wdis is predicted. It is around two-thirds of the experimental value.

The estimation of the delamination area was conducted through the energy absorption formula (3) from Olsson. This estimation is
better than the simple force-based approach by Poe but still does not provide a satisfactory result as the value is around 45% of the
experimental value. This behavior is the same as expected and explained above for Poe's equation.

The layered-shell approach provides a force response prediction that is hardly better than the analytical curves. The model behaves
much stiffer than the experiment. The insufficient progressive damage model of the layered-shell causes this behavior. The layered-
shell elements have degrees of freedom only on the laminate level. The laminate theory couples all plies in their deformation
behavior. Cracks in a single layer cannot open as the load is immediately transferred to the neighboring plies. For the same reason,

Table 4
Delamination damage of the 25 J impact on the layup A1 reported in Ref. [80]. Interface 1 is the farthest from the impact side.

Inter-
face

Springmass
+ Poe’ seq.

Orth. plate
+ Olsson’s

eq.

Layered
shell

Stacked-
shell

Stacked-
solid

Splitting Test result

1

2

3

4

5

6
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the predicted energy dissipation is not even half of the experimental value. In addition, the quantitative overprediction of the
delamination area is likely to be caused by the overestimated contact force. However, the delamination results show qualitatively
good agreement with the test.

With the stacked-shell model, the first meso-scale approach is evaluated. In comparison to the previous three results, the respective
history curve is in better agreement with the experimental reference. However, the response still behaves too stiff. A possible ex-
planation is the shell elements' insufficient prediction of the surface indentation behavior. Apart from the lowermost interface, the
prediction of the delamination is plausible in shape, orientation, and size.

By the stacked-solid model, the prediction of the force history, the maximum force and the energy dissipation are improved. The
curve still does not fit ideally, but it is much closer to the experimental reference. Also, the shape of the delaminations fits well to the
test results — except the lowermost delamination which is underestimated. The most likely cause of this underestimation is a
misbehavior of the interaction of tensile inter-fiber cracking and delamination. According to Choi and Chang [90] this interaction is
crucial for predicting delamination in the interfaces on the impact backside.

Finally, the splitting model with the intra-ply cohesive zones is evaluated. Its predicted history curve is closely related to the result
of the ordinary stacked-solid model. Differences can be observed in the delamination results. Even though their size and orientation is
in agreement with the experimental results, the delaminations show a line pattern that results from the inter-fiber damage. The good
fitting of the delamination results is only broken by the lowermost delamination. Even though the shape and the orientation are

Fig. 11. Test case 1: Force-time history of analytical analysis methods (top) and FE simulations (down).

Table 5
Overview of predicted results and deviation from the test results for a 25 J impact on the layup A1 reported in Ref. [80].

Spring-mass Ortho. plate Layered-shell Stacked-shell Stacked-solid Splitting Test

Fmax [kN] 10.3 (+18%) 10.1 (+16%) 10.7 (+23%) 10.1 (+16%) 9.3 (+7%) 9.1 (+5%) 8.7
Fd [kN] 4.4 (+16%) 4.4 (+16%) 4.6 (+21%) 5.3 (+1%) 5.0 (+1%) 5.20 (+1%) 3.8
dmax [mm] 4.80 (−8%) 5.00 (−4%) 5.17 (± 0%) 5.22 (± 0%) 5.20 (± 0%) 5.25 (+1%) 5.2
Adela [mm] 211 (−83%) 560 (−55%) 1650 (+33%) 963 (−23%) 1235 (−1%) 1110 (−9%) 1245
Wdis [J] – 8.0 (−36%) 5.3 (−58%) 6.0 (−52%) 6.5 (−48%) 7.6 (−39%) 12.5
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correctly captured, its extent is much too small.
In general, the data in Table 5 shows that the energy absorption is estimated too low by all the tested models. In literature, better

agreements have been reported. Comparing the tested models in the present work with the reference models from other authors we
need to point out one throughout difference: There is no permanent indentation considered in this work. Deformation occurs fully
reversible. However, the prediction is sufficiently good for the loading phase, although the relaxation is not correctly reproduced. The
energy that is dissipated through residual stresses after the impact is not considered in the value Wdis of all models. In addition, the

Fig. 12. Test case 2: Force-time history of analytical analysis methods (top) and FE simulations (down).

Table 6
Damage modes of the second reference impact (40 J).
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a Damage is computed internally by Abaqus Explicit but field output is not provided.
b Intralaminar cohesive elements are parallel to the z axis. Matrix cracks cannot be seen in the top view. A rotated view is used for the matrix cracks.
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compression damage behavior is not correctly captured by the bilinear law with fully elastic relaxation [3]. A plateau phase with a
constant residual stress would lead to significant additional energy absorption.

However, also without the correct energy dissipation, plausible delamination shapes and good values for the projected delami-
nation area are provided by all meso-scale FE models.

5.2.2. Test case 2: 40 J impact on a clustered laminate
In addition to the delamination, also fiber failure is present in this test case. The availability of more than one test result provides

knowledge about the scatter of the test results. Analogously to test case 1, the results are presented in three parts: Table 6 contains a graphical
overview of the impact damage results, the Figs. 12 and 13 show the history curves and Table 7 lists important quantitative values.

In contrast to test case 1, the delamination results are directly compared with the ultrasonic D-Scan image. Also, the fiber crack on
the impact side and the inter-fiber crack on the back side are part of the comparison. Also, the force-displacement history in Fig. 13 is

Fig. 13. Test case 2: Force-displacement history of analytical analysis methods (top) and FE simulations (down).

Table 7
Overview of predicted results including the percentage of deviation from the test for a 40 J impact on the clustered layup from test case 2.

Spring-mass Ortho. plate Layered-shell Stacked-shell Stacked-solid Splitting Test

Fmax [kN] 14.4 (+12%) 14.2 (+11%) 15.2 (+19%) 14.7 (+15%) 11.8 (−8%) 12.2 (−5%) 12.8± 0.3
Fd [kN] 4.6 (−23%) 4.6 (−23%) 9.8 (+63%) 7.6 (+27%) 7.4 (+23%) 7.4 (+23%) 6.0±0.3
dmax [mm] 5.50 (+3%) 5.69 (+6%) 5.03 (−6%) 5.26 (−2%) 5.48 (+2%) 5.25 (−2%) 5.35± 0.12
Ti [ms] 4.75 (−7%) 4.65 (−9%) 4.66 (−9%) 4.98 (−2%) 4.71 (−8%) 5.00 (−2%) 5.12± 0.16
Adela [mm2] 413 (−72%) 803 (−45%) 1680 (+16%) 1900 (+31%) 1650 (+14%) 1380 (−5%) 1450±90
lfibcrack [mm] – – (60)b (+3%) – a 46 (−21%) 51 (−12%) 58±8
lmatcrack [mm] – – (63)b (+15%) – a 43 (−22%) 62 (+13%) 55±5
Wdis [J] – 9.3 (−62%) 12.7 (−48%) 17.0 (−31%) 20.5 (−16%) 15.8 (−35%) 24.5± 1.9

a Damage is computed internally by Abaqus Explicit but field output is not provided.
b The simulation output is not a discrete crack but an area like the result in Table 6 shows.
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plotted for this second test case. Each diagram contains experimental history curves of three experiments to allow an estimation of the
simulation results in the context of experimental scatter.

The analytical spring-mass model shows a similar behavior like in the first test case. Before the force exceeds the threshold force for
fiber failure at around 12 kN the approximation by the sine curve is quite good. But the lack of a progressive damage behavior leads
to an overestimation of the contact force by more than 2 kN. Also the analytical damage prediction according to Poe's equation
behaves similarly as for test case 1 and strongly underestimates the projected delamination area.

The plate model improves the contact force prediction hardly, in comparison with the spring-mass model. It neither captures the
force drop after exceeding the fiber-failure threshold. However, it provides an energy dissipation of 9 J. Through Olsson's equation,
this results in an estimation of the delamination area that is more than half of the test result.

The layered-shell approach also behaves similarly as in the previous test case. Its force response is too stiff, and the maximum is
severely overestimated. The energy dissipation is with around 50% of the test result much too low. The delamination damage result is
qualitatively suitable. However, it is worth mentioning that the delamination shapes are all of oval and do not show sharp edges like
in the test. This lack of edges can also be traced back to the model's inability to emerge sublaminates and cracks in the laminate.

The stacked-shell model provides a significant improvement of the delamination pattern. Shape, size, and orientation of the visible
damages fit well to the test result. Restricted by the capabilities of the built-in material model, the output of the computed intra-ply
damage is not available and cannot be evaluated. The force history is still too stiff, and the force peak is overestimated by 2 kN. An
improvement of the energy absorption to two-thirds of the experimental value indicates that the damage-modes are captured more
realistically than with a macro-scale model.

Also for this test case, the stacked-solid model provides another step of improvement. The delamination pattern is well predicted.
Also, the fiber crack and the matrix crack on the back side are captured plausibly. In contrast to the shell models, the force history fits
better to the experimental curves. About the cohesive surfaces, one point is remarkable. With purely bilinear damage laws, this model
is capable of predicting a permanent indentation value. This ability originates from the consideration of post-failure static friction by
the cohesive surfaces [34]. This effect significantly improves the predicted energy dissipation which is now close to the test value.

Finally, the splitting model results confirm the impression of the first test case. The results are plausible regarding delamination,
fiber failure, and inter-fiber cracking. A fringed delamination pattern, due to the in-plane cohesive zones, appears to be characteristic
of this model. The force-time history shows a good fit in the loading phase. Only the relaxation is not captured perfectly due to the
absence of a permanent indentation model in the cohesive elements. In comparison to the stacked-solid model, the energy absorption
is lower. It is on the level of the layered-shell approach, which also uses cohesive elements.

5.3. Computational effort

Apart from the analysis results, the required computation effort is an important measure to assess an analysis method. For this
benchmark, all simulations were conducted on the same computer system, a Linux cluster with 128 GB RAM and an Intel CPU Xeon
E5-2690 with 3.8 GHz. Eight cores were used for each simulation with the Abaqus release 6.14-1.

Besides the number of finite elements and the impact duration, the maximum stable time increment Δtstable plays a major role in
the total computation effort of FE models. The stability of an explicit integration scheme is assessed with the Courant condition in Eq.
(17). The dependency of the stable time increment on the smallest element length results in a high influence of the number of
elements in the thickness direction. According to the Courant condition [91], the stable time increment increases proportionally with
lcrit and reciprocally with the speed of wave propagation cwave. cwave results from the modulus E and the mass density ρ. For solid
elements, the ply thickness tply determines this critical length.

∼ ∼t l
c

l
ρ
E

Δ .stable
crit

wave
crit (17)

Regarding this condition for Δtstable, the computation time tcompute is influenced strongly by the laminate's ply thickness tply. This
effect becomes even more severe when more than one element in thickness direction shall be used. Especially the analysis of
composites of very thin plies is computational costly. If such thin plies or more than one element in thickness direction is required, a
shell model could be an alternative for these plies.

Table 8
Computation effort for the first test case for all methods.

Spring-mass Plate Layered-shell Stacked-shell Stacked-solid Splitting

Elements a – – 5400 70,000 43,000 120,000
Integration pointsb – – 210,000 243,000 43,000 345,000
Computation time [h]c 0 0.5 0.3 1.6 3.7 6.7

a Only elements of the composite specimen are taken into account. Impactor and support structure are modelled by 1750 additional elements.
b Three integration points per ply in thickness direction were chosen for shell elements.
c FE simulation run time on 8 CPUs for explicit and 2 CPUs for implicit time integration.

R. Bogenfeld et al. Engineering Failure Analysis 86 (2018) 72–99

89



∼ ∼t n T
t

n
Δcompute

el i

stable

elZ
t
n

ply

elZ (18)

∼t n .compute elZ
2 (19)

Implicit time integration is not affected by this instability issue. Transient simulation with much larger time increments is pos-
sible. But for another reason, its application on models with many degrees of freedom is not recommended. The computational effort
per increment is increasing quadratically with the number of degrees of freedom. Its application to a meso-scale approach is ac-
cordingly not efficient. However, it is surely the right choice for a macro-scale approach. This approach requires only a few degrees of
freedom, but many integration points. Therefore, it is efficient to use large increments. This avoids the evaluation of each integration
point for a high number of increments like in an explicit simulation.

An overview about the computation time, the number of elements and integration points is given in Table 8. The spring-mass
model requires only the evaluation of several analytical equations. Consequently, its computation effort is negligible. Although the
plate model is still analytical, its transient evaluation needs to be performed with numerical time integration. With half an hour its
computational effort already exceeds the effort for an FE macro-scale model. It is apparently visible that the computational effort
increases strongly if a meso-scale method is applied. The corresponding large number of degrees of freedom requires several hours to
achieve a simulation result. Especially the ply-splitting model has high computational costs. But also the stacked-solid model requires
a larger computation time than the number of elements would suggest. The reason for the high computation time is the cohesive
contact formulation, which does neither appear in the number of elements nor the number of integration points.

One remark about the layered-shell model needs to be added at this point. The corresponding computational effort was mainly
driven by the included contact formulations between the impact setup and the specimen. Replacing these contact with boundary
conditions reduces the computational effort drastically to less than 2 min.

5.4. Modeling aspects

A numerical or analytical impact analysis aims for the replacement of an impact test. Reduced costs, more flexibility, and faster
results make numerical analysis attractive. However, these advantages are only a partial picture of the numerical analysis. In this
subsection, we look at the analysis procedure comprehensively. This view goes beyond the actual impact analysis and considers the
relocation of efforts.

The modeling effort around the analysis procedure consists of the required work for the preparation of the actual model and of the
expenditure to determine the respective input parameters. In general, with increasing complexity of the model, the modeling effort
also increases the preparation effort. Even though the modeling effort occurs only once per impact setup, for the analysis of a real use-
case, parts of this effort will reoccur for each impact location. Therefore it can be a driving factor of a method's overall effort. The
evaluation of the modeling aspects builds on the experiences of the authors during the research for behind this paper. Based on these
experiences, this section includes brief elaborations of the most significant challenges related to the modeling and preparation
procedure.

5.4.0.1. Impact setup and boundary conditions
An impact test, especially on coupon level, is conducted with a test setup that is in contact with the impact specimen. Replacing

this test setup with boundary conditions strongly influences the indentation stiffness of the specimen. The damage is affected ac-
cordingly. If boundary conditions shall replace the model of the test setup, checking the elastic indentation stiffness is mandatory.

5.4.0.2. Material parameters
The replacement of impact testing effort through numerical analysis implies a relocation of the experimental effort to a lower

level in the test pyramid [92]. Macro- and meso-scale methods require an elaborate material characterization. Parameters of the
elasticity and the strengths of a unidirectional ply have to be determined. For the determination, in-plane parameters exist established
standards. Difficulties arise with the determination of out-of-plane properties E33,G23,X33c,X23. Meso-scale models additionally need
the critical energy release rates G as input values for the constitutive damage model. Standard tests are available for their de-
termination at the ply interfaces. Comparable values for intra-ply damage are hard to obtain experimentally. For their determination,
Pinho et al. [93] developed a test setup with a compact compression/tension specimen. However, the values reported in the literature
are hardly traceable and diverge strongly for the fiber failure modes. For Gf+ of unidirectional carbon fiber material, various authors
report values between 101 mJ

mm2 and 133 mJ
mm2 [3,35,87,94]. The range for Gf- is similarly wide. During this benchmark, we experienced

that the availability of these energy release rate is key for a good damage prediction. For that purpose, the calibration based on an
impact test is an option [3].

The analytical spring-mass model requires either a similar test-based calibration or an accompanying elastic FE analysis. One
calibration per impact configuration has to be performed. The plate model works with elastic parameters of a unidirectional ply. The
plate stiffness constants of the classical laminate theory originate from these elastic parameters.

Concluding from this paragraph, the availability of material parameters can significantly influence the best-suited analysis
method.
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5.4.0.3. The choice of a finite element type
As impact load is an out-of-plane indentation, the laminate sees a significant bending load. As the mesh of macro-scale models

describes the laminate as a whole, the elements have to be capable of capturing this bending. For that reason, shell elements are
preferred on macro-scale. In contrast to that, the single plies see only slight bending. Compression on the impact side or tension on the
impact backside dominates the state of stress in each ply. Accordingly, solid elements can be applied. These capture the out-of-plane
strain and stresses, which is advantageous for capturing the local surface indentation of the impactor.

As the bending load can cause locking effects [95], reduced integrated elements are suitable in both macro and meso-scale models
(S4R shell elements and C3D8R solid elements in Abaqus). These work with a single integration point per element, which facilitates
the material degradation through a CDM model. In fully integrated elements with several integration points, damage can initiate at
some of these points only while others remain intact. This disproportionality of stiffness between the integration points can result in
severe element distortions which cause instability of the explicit simulation.

As linear reduced integrated elements tend to hourglassing, countermeasures have to be applied. Stiffness-based hourglass control
or the enhanced option in Abaqus Explicit [81] are suitable for this purpose. In both cases, the artificial strain energy is an important
measure to evaluate the validity of the solution. Its value has to remain small in comparison with the strain energy in the model.

Additionally, two other element types can be considered for application in meso-scale models. To avoid hourglassing, the in-
compatible mode elements (C3D8I in Abaqus) can be applied. These are fully integrated but suitable to capture bending deformation
and can be applied to impact analysis [57]. However, they require a rectangular element shape. Alternatively, continuum shell
elements (SC8R in Abaqus) are well-suited to capture bending load. These shell elements with eight nodes compute out-of-plane the
strains from the nodal are computationally less expensive than solid elements [96] and their application for impact analysis was also
studied [56].

5.4.0.4. Artificial parameters in cohesive zones
Meso-scale methods work with cohesive zones. These are well-suited for the prediction of delamination. However, their input

parameters are not fully physically-based. The stiffness of a cohesive zone is a numerical parameter and makes a laminate softer than
it would be. Extremely high stiffness values would affect the stable time increment of the simulation. Therefore a trade-off between
artificial stiffness reduction by the cohesive zone and computational effort has to be made. According to Turon [73] this reduction
shall not exceed two percent of the initial stiffness. Panettieri et al. [53] recommend to adjust the cohesive stiffness with the help of
simple bending test cases.

Besides, the failure initiation in the cohesive zone requires strength parameters. This is an advantage of cohesive zones in
comparison with other fracture mechanical approaches: it permits the combination of stress- and energy-based crack descrip-
tions [97]. The exceedance of interfacial shear and normal strengths initiates the energy based crack propagation. However, only for
a sufficiently fine mesh, these strength parameters are physical values. As we described in the Section 3.2 about cohesive zone
methods, a minimum number of three elements is required in the cohesive zone of the crack tip. For a given element length, this
requirement determines the artificial interface strength. Panettieri et al. investigated the influence of this numerical adaption on the
delamination result of an impact analysis [53]. They observed a severe increase of the delamination area, for artificially reduced
strengths values. Therefore, the element length in the cohesive zone and the strength parameters must be chosen with care.
Otherwise, the impact solution could be affected.

5.4.0.5. Slave and master in contact formulations
Cohesive contact behavior can be applied only when a pure slave master formulation is used. Surface to surface contact is not

available in the latest release of Abaqus Explicit. The slave and master sides must be chosen carefully. The laminate curvature under
impact load can lead to severe penetrations of the plies if the inner contact partner forms the master surface. In contrast to that, the
master surface on the outer contact partner does geometrically not allow a penetration of the inner partner's slave nodes (Fig. 14).
Instead, gaps between the layers arise. While the first variant is too compliant, the latter is too stiff. Especially the higher compliance
affects the structural behavior severely. Therefore the second option is chosen in this study.

Fig. 14. Master-slave selection for neighbor plies under impact load.
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5.4.0.6. Cohesive surface issues
Employing cohesive surfaces in a model differs from using cohesive elements. Although the model building itself is easier with

cohesive surfaces, some additional conditions impede the analysis. An uneven master surface severely influences the damage be-
havior under compression load. Slave nodes that are close to a master element's edge tend to separate immediately if compression
load is applied. This results in large, physically unlikely delaminations. Stability problems of the simulation are likely to arise. In
consequence, incoherent meshes in neighboring plies must be applied. We found two possible solutions to this issue. Firstly, the slave
surface can be equipped with a denser mesh. However, this solution cannot be employed for laminates because each embedded ply is
simultaneously master for its upper and slave for its lower ply. The second solution is an adaption of the mesh. In each second ply, the
nodes were shifted by 0.2 mm in the in-plane directions.

5.4.0.7. Intra-ply cohesive zones
Macro-scale modeling is fairly quick and easy, as the mesh only has to describe the mid plane of the laminate. Building up a meso-

scale mesh is more costly. The stacking of the plies has to be arranged correctly. Many contact zones or tie constraints have to be
defined. Cohesive surface modeling is still easier than building a model with cohesive elements. The latter have a finite thickness, and
the ply thickness has to be reduced respectively. The ply properties can require adaption if the reduction is significant for the stress in
the ply. However, up to that point, the model building can be well automatized. This changes when the ply-splitting model is
implemented.

The cohesive zones in the ply-splitting model highly increase the modeling effort. Even on a flat plate, the fiber-aligned meshing is
challenging if the fiber orientation differs from 0deg and 90deg. If a structural is not flat or not rectangular, a correctly aligned mesh
becomes very hard to employ. Even though it is possible to create an appropriate model, the required building effort is likely to be
inefficiently high.

5.4.0.8. Stacked-shells rotational degrees of freedom
A particular issue occurs when a stacked-shell model is combined with cohesive elements. The nodes of the shell elements have

rotational degrees of freedom. The cohesive elements work with translational degrees of freedom only. Consequently, the de-
formation state of two neighboring plies is not fully coupled. This issue affects the specimen region close to the impact location. Here,
the rotational amplitudes have their maximum values. As this area is relevant for the damage calculation, the overall result can be
affected.

Uncoupled rotational deformation can occur in each ply on its own. The laminate is more compliant than it actually should be.
Our rough estimations showed a reduction of the indentation stiffness by around two percent. The reduction is globally not severe,
but the corresponding deformation concentrates on in the layer where the impactor it induces - on the impacted side. This can be
observed in Fig. 15. In consequence, the structural effort is overestimated in the upper plies and underestimated on the impact
backside. This finding is important when impact shall be analyzed through a stacked-shell method.

5.5. Conclusion of the coupon benchmark

Concluding the evaluation of effort and predictive capabilities, the six analyzed methods are qualitatively categorized in Fig. 16.
The spring-mass model can be used for a quick estimation of the expected values for contact force, impact duration and indentation.

However, the corresponding damage prediction can hardly be compared with experimental results because a projected delamination
area cannot be obtained. Also, a spring-mass model does not provide a real closed-form solution as it requires input about the
indentation stiffness. The easiest methods to obtain this value are an FE simulation or an impact experiment.

The plate model is slightly improving the analysis results, but strongly increasing the analysis effort. Its advantage is only that it is
a full closed-form solution and can work with stiffness parameters of the unidirectional plies. Anyway, it can hardly be used for
plausible damage predictions.

A layered-shell model is probably the best compromise between the resulting quality and the computation effort. If contact
modeling can be avoided, this method can be applied to obtain a plausible damage result quickly, even though the numerical model
does not capture the damage mechanisms physically-sound.

The stacked-shell approach significantly increases the analysis effort. Although its modeling and computation are costly, a meso-

Fig. 15. Behavior of rotational degrees of freedom if coupling between the plies is applied (a) and omitted (b).
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scale abstraction is required to provide satisfactory results for the impact response and the damage in the laminate. Shell elements are
advantageous for very thin plies, as their stable time increment is not affected by the ply thickness.

The stacked-solid model still improves of the capturing of surface indentation by the impactor and hardly increases the expenses.
Therefore this approach should be preferred to a stacked-shell model. Also, the application of cohesive surfaces instead of cohesive
elements has an impact on the model. On the one hand, the cohesive surfaces even lower the modeling effort but on the other hand,
they increase the computational effort. In addition, cohesive surfaces allow considering permanent indentation by static friction,
which is a significant improvement.

Including splitting in the model improves the physical soundness of the meso-scale approach. However, it strongly increases the
computation and modeling effort. The results of this model are comparable to an ordinary stacked-solid approach. Accordingly, its
superior advantages could not be confirmed in this study. Regarding a less-advanced meso-scale model, losses in accuracy and
sensitivity of the model can be accepted, but the modeling and computation are much lower.

6. Application on the structural level

The conducted benchmark proofs the capability of several methods to achieve a plausible result. For physically-sound damage
behavior, the application of a meso-scale method is appropriate. At the same time, the large computational effort for small specimens
makes a direct transfer to the structural level unattractive. Confirming the result from the literature review in Section 2, the authors
conclude that the computation effort of an accurate meso-scale model is too large for their direct application on the structural level.
Only a layered-shell model could be considered for immediate application. However, the applicability of high-fidelity simulation
methods can severely be improved by exploiting some characteristics of low-velocity impact:

6.1. Local damage

LVI damage is likely to occur locally in the contact zone with the impactor. It seems reasonable to establish a global-to-local

Fig. 16. Evaluation of the tested models as qualitative graphical illustration.

Fig. 17. Generic composite panel for evaluation of the computation effort on structural level.
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approach. Reducing the analysis zone for the high-fidelity model significantly decreases the computation effort for a structure. The
most simple realization would be a direct integration of the meso-scale mesh in a coarse macro-scale mesh. Implemented by
Schwab [98] and Riccio [66], the suitability of this approach has been proven. Accordingly, a substructure model could be applied,
making a superelement from the surrounding structure of the damage relevant impact zone.

For evaluation of the computation effort of a structure in comparison to the benchmarked coupons, impact simulations on a
generic stiffened panel as illustrated in Fig. 17 are conducted. Outer dimensions of 1050×900 mm2, a curvature radius of 1200 mm
and the layup of test case 2 are employed. The panel was meshed three times, using layered-shells, a high-fidelity stacked-solid, and a
coupled mesh. The associated computation times are listed in Table 9 and compared to the stacked-solid model on CAI level. While a
layered-shell simulation can easily be conducted on a structure, the stacked-solid model results in an inefficiently high effort. Ad-
ditionally, the application of a biased mesh results in elements with very poor aspect ratio, possibly resulting in numerical difficulties.
By a coupled mesh model, the computational effort only slightly exceeds the effort on coupon level. The computation effort for
structural LVI simulation is driven by the damage-prone area, which requires a meso-scale mesh to capture a plausible progressive
damage behavior. This procedure is legitimate if impact damage occurs only locally. Even though this is quite likely for low-velocity
impact, if non-local damage would occur anyway, the simplified model runs the risk of missing it. At this point, it is important to keep
attention on possible damage hot spots around the impact location. An appropriate layered-shell model becomes important. The
coupon benchmark has shown the capability to predict damage by layered-shells, even though the progressive damage behavior is
insufficient. Using this capability, the surrounding structure around the impact zone can be checked for possible damage prone areas,
using a simple shell model and a suitable failure condition.

6.2. Increased impactor velocity

In the work of Abisset [52], the equivalence of LVI damage and quasistatic indentation was determined. This equivalence re-
versely leads to an additional similarity of impact scenarios. Keeping the impact energy constant, the variation of impactor velocity
and mass will not affect the damage result. Exploiting the range of similarity, speeding up an LVI scenario becomes possible by
reducing the impactor weight and increasing its initial velocity. This adjustment firstly affects the impact duration in the force-time
history, as shown in Fig. 18. Anyway, speeding up the impact process does not necessarily lead to relevant differences in the damage
effects. A look at the force-displacement curve supports a possible similitude (Fig. 19). Both figures compare the history data of high-
fidelity impact simulations of the same specimen impacted with a constant energy of 40 J but different impactor velocities between
3.7 m

s and 50 m
s . The mass was chosen accordingly.

LVI is driven by the quasistatic response of a structure [8]. In the dynamic impact system, this response is in agreement with the
first system's eigenmode. Relevant participation of higher order eigenmodes indicates the end of the LVI zone, where a changed
damage behavior is likely to occur. The physical damage cause and the result become invalid for the actual reference of LVI.
Therefore the authors additionally conducted a modal analysis and analyzed the energy distribution over the system's eigenmodes3.
From the high-fidelity analysis and the modal analysis, the following possible limitation factors were identified:

Table 9
Computation effort on structural level.

Layered shell Stacked-solid Coupled mesh CAI stacked-solid

Computation time [h] 0.3 208 5.7 3.7

Fig. 18. Simulated force history of the 40 J impact in test case 2 with changed impactor velocity and mass.

3 Modal analysis of the impact system was conducted by tieing contact points of the specimen with impactor and support structure.
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• Changed eigenmode shapes

• Energy fraction in higher order vibration modes

• Different damage threshold force or maximum contact force

• Different damage pattern

The influence of higher order vibrations is usually driven by the second eigenmode. Its effect is visible in the force history of all
five analyzed impact systems. Its frequency is nearly independent from the impactor mass (compare with Table 10 and Fig. 11). But
the increasing frequency of the first mode reduces the gap to the second eigenmode. While the shape of the first mode remains
unaffected on the entire velocity range, the second mode shows first differences only above 25 m

s .
Regarding the influence of the energy distribution, a theoretical assumption is made: Based on Olsson's assessment of LVI, only the

deformation of the first mode is considered damage relevant. Energy in other eigenmodes is not contributing to the damage. A
decreasing energy fraction in the first mode would reduce the effective impact energy. Analogously to the limit for artificial energy in
an FE model, an energy limit of around three percent could be defined here. Reversely, at least 97% of energy should go to mode one.
This limit is conservative, as the energy in higher order modes is likely to propagate damage, too. Consequently, the actual effective
impact energy can be considered higher than the fraction in the first mode.

Additionally, the influence of the varying impactor mass on force thresholds and the maximum contact force has to be taken into

Fig. 19. Simulated force-displacement history of the 40 J impact in test case 2 with changed impactor velocity and mass.

Table 10
Eigenmodes of impact systems with changed impactor velocity and mass.

3.7 m
s 8 m

s 15 m
s 25 m

s 50 m
s

Eigen-

frequencies

Energy in

mode Ia

I. 136 Hz

II. 5661 Hz

297 Hz

5668 Hz

555 Hz

5691 Hz

939 Hz

5754 Hz

1707 Hz

5880 Hz

99.9% 99.7% 98.4% 95.7% 83.5%

Mode I

Mode II

Dela-
mination

a Ratio of energy in mode I to total impact energy.
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account. A significantly changed damage threshold like it occurred in the simulation with 50 m
s is likely to involve a different damage-

mode or location. Qualitative change of the damage result can be expected. The maximum contact force is a driving factor for the
damage propagation [16]. A relevant change of the maximum value would primarily affect the damage quantitatively. Regarding the
force history curves, the influence of higher-order vibration fades away for 3.7 m

s and 8 m
s . In the simulation with 15 m

s , a constant
oscillation remains in the system, possibly influencing the maximum contact force by its amplitude. This observation suggests a limit
between the configurations 8 m

s and 15 m
s .

While the previous limitation factors are physically based, the damage pattern is a phenomenological factor. If any physical limits are
exceeded, the damage pattern works as an indicator. Between the five impact configuration, a significant influence is visible for 25 m

s and
above. This indicates that the limit of validity is located around the 15 m

s configuration. Influence on the force history is recognizable, anyway
the damage pattern is still unaffected. The mode shapes and the modal energy distribution still conform to the limits. In the given example
(test case 2) the contact time reduces by factor three between 3.7 m

s and 15 m
s . The computational effort decreases proportionally.

In that range, the energy ratio of the first eigenmode is still very high. It receives 98% of the total impact energy. This is enough to
consider the missing two percent negligible for damage development but obviously more than in the reference case of the experi-
mental impact with 3.7 m

s . The trend of this energy ratio can additionally be exploited. Indicating the validity of an accelerated impact,
it defines the LVI limit for an arbitrary impact system. While a definition according to velocity or impactor mass does not take into
account the structural response, the derived criterion, called Mode One Energy Ratio, can serve as an objective measure of the
characteristics of an impact system. The conducted analysis suggests a limit between one and a half and two percent of the total
energy to be allowed in higher order vibration modes.

7. Conclusion and outlook

The conducted review and benchmark of methods on different abstraction scales showed that impact simulation is still a chal-
lenge. Within the presented FE methods, even simple models are capable of predicting the major damage-modes of LVI. Anyway, not
all of them use physically correct damage behavior. For a quick estimation, the application of a macro-scale model with layered-shell
elements is recommended. In this case, contact modeling should be avoided and implicit time integration is the right choice.

To achieve better damage results, we recommend applying a meso-scale approach. The modeling effort and the computation
effort are much higher than for a layered-shell model, but the impact process and its damage are captured physically plausible.
Cohesive surfaces and finite solid elements are the suggested choice, concluding this study.

For further improvement of the results, advanced damage-models are required. Permanent indentation, nonlinear shear behavior,
and the constitutive law for full compression damage must be taken into account. Although such approaches are not part of this study,
it is important to mention that the most models in recent publications contain these advances. Their implementation to any of the
presented models in this study is possible.

Impact simulation on composite structures can be conducted with comparable computation effort as coupons. Local analysis
approaches with increased impact velocity are the key to achieve structural impact analysis in a manageable time frame. If a high-
fidelity model of sufficient accuracy can be established, it will not make tests redundant but move the testing to a lower level in the
testing pyramid. Many material parameters, especially for fracture mechanics, have to be determined experimentally. With the
degree of detail also the number of required parameters increases. Especially cohesive zone approaches require additional parameters
that depend on physical and numerical properties. Their definition itself is an object of research.

This results in an additional aspect for best choice of a simulation method — the availability of material parameters. High-fidelity
methods require a large set of parameters for elasticity, strength and damage behavior. Especially the latter is often not available. In
that case, the application of a layered-shell model should be preferred, as the progressive damage behavior is unlikely to be predicted
correctly. If there is also no strength data available, the application of analytical analysis in combination with the evaluation of
threshold forces can be a good alternative.

The analysis of impact on the structural level is the next important step. LVI damage itself is not concerning the entire structure
but is rather a local phenomenon. A large part of the impacted structure is only participating in the impact by elastic deformation. A
detailed damage-model is not required in this region. A combination of stacked layer and layered-shell model appears to be the best
choice for these scenarios. The surrounding framework of the damage-prone area is sufficiently described by shell elements without
progressive damage-model. The evaluation of failure conditions is sufficient to ensure the validity of the chosen damage zone and
determine other points of possible damage.

Finally, the possible acceleration of impact simulations by increasing the impactor speed and reducing its mass allows reducing
the computational effort significantly. The acceleration is limited when the impact system leaves the LVI range. To determine this
limit objectively, an energy-based criterion was derived, theMode I Energy Ratio. It uses the energy fraction of the first eigenmode and
the total impact energy. If this is at least 98%, an impact system complies the assumptions of LVI. Respecting the properties of the
entire impact system, this criterion is superior to definitions based on mass and velocity of the impactor.
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